```
Printed Pages - 8
```


337312 (37)

BE (3 ${ }^{\text {rd }}$ Semester)
Examination, April-May 2021
Branch : Mechanical
NUMERICAL ANALYSIS \& COMPUTER PROG. (C \& C++)

Time Allowed : Three Hours
Maximum Marks : 80
Minimum Pass Marks : 28

Note : (i) Part (a) of each question is compulsory.
(ii) Attempt for 14 marks for remaining portion
for each question of each unit.
337312 (37)
P.T.O.

UNIT-I

Q. 1. (a) Round off the number 8.8975 upto three

```
decimal places. Also mention the rules
```

followed to solve the problem. 2
(b) If $R=4 x y^{2} / z^{3} \&$ errors in x, y and z be 0.001.

Show that the maximum relative error at $x=$
$y=z=1$ is 0.006 .
(c) Find the negative root of equation $x^{3}-21 x+$
$3500=0$ correct to two decimal places by

Newton-Raphson method.
(d) Solve the following equations by Gauss-
elimination method, using pivoting
technique :
7
$2 x+y+z=10 ; 3 x+2 y+3 z=18$ and
$x+4 y+9 z=16$

UNIT-II

Q. 2. (a) Reduce the law $y=a x^{n}+b \log x$ to linear law

$$
\gamma=a x+b
$$

(b) Fit a straight line to the following data :

Year (x)	1951	1961	1971	1981	1991
Production (y)	8	10	12	10	16

(5)

UNIT-III

Q. 3. (a) Find an approximate solution for $y(0.1)$ from
$\frac{d y}{d x}=x^{2} y-1 ;$ if $y(0)=1$ using Tayor series. 2
(b) Evaluate $\int_{0}^{5} \frac{d x}{4 x+5}$, taking 11 ordinates,
using Simpson's $(1 / 3)^{\text {rd }}$ rule. Also find an
approximate value of $\log _{e} 5$. 7
(c) Solve following by "Modified Euler's Method"
at $\mathrm{x}=0.6$, take interval between x as 0.2 .7
$\frac{d y}{d x}=\log (x+y)$; if $y(0)=2$.
(d) Using Runge-Kutta method of fourth order;
solve $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ with $y(0)=1$ at
$x=0.2$.
7

UNIT-IV

Q. 4. (a) Write the conditions for a partial differential
equation if it is (i) Elliptic (ii) Hyperbolic.
(b) Solve $4_{x x}+4_{y y}=0$ over the square mesh of
side 4 units, satisfying the following
conditions :
(i) $\mathrm{u}(0, \mathrm{y})=0$, for $0 \leq \mathrm{y} \leq 4$
(ii) $u(4, y)=12+y$, for $0 \leq y \leq 4$
(iii) $u(x, 0)=3 x$, for $0 \leq x \leq 4$
(iv) $u(x, 4)=x^{2}$ for $0 \leq x \leq 4$ answer using

1 iteration only.
(c) Solve $\nabla^{2} u=-10\left(x^{2}+y^{2}+10\right)$ over the
square mesh with sides $x=0, x=3$ \&
$0 \leq y \leq 3$ with $\mathrm{u}=0$ on all boundaries 4 mesh
length 1 unit. Use Gauss elimination method
for final solution.
(d) Solve $\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial u}{\partial t}=0$ for $u(\theta, t)=u(4, t)=0$
$\& u(x, 0)=x(4-x)$. Assume $h=1$ find u
for $t 0$ to 5 . Using average formula of

Schmidt.
7

UNIT-V

Q. 5. (a) Define c-standard libraries.

(8)

(b) What are operators chart \& discuss
various types of operators offered by C/C++ language. 7
(c) Define \& differentiate one-D \& 2-D array.
(d) Write a program to find a number is odd or even.

